
Mock Roles, not Objects
 Steve Freeman, Nat Pryce, Tim Mackinnon, Joe Walnes

ThoughtWorks UK
Berkshire House, 168-173 High Holborn

London WC1V 7AA

{sfreeman, npryce, tmackinnon, jwalnes} @thoughtworks.com

ABSTRACT
Mock Objects is an extension to Test-Driven Development that
supports good Object-Oriented design by guiding the discovery of
a coherent system of types within a code base. It turns out to be
less interesting as a technique for isolating tests from third-party
libraries than is widely thought. This paper describes the process
of using Mock Objects with an extended example and reports best
and worst practices gained from experience of applying the
process. It also introduces jMock, a Java framework that embodies
our collective experience.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques,
Object-Oriented design methods

General Terms
Design, Verification.

Keywords
Test-Driven Development, Mock Objects, Java..

1. INTRODUCTION
Mock Objects is misnamed. It is really a technique for identifying
types in a system based on the roles that objects play.

In [10] we introduced the concept of Mock Objects as a technique
to support Test-Driven Development. We stated that it encouraged
better structured tests and, more importantly, improved domain
code by preserving encapsulation, reducing dependencies and
clarifying the interactions between classes. This paper describes
how we have refined and adjusted the technique based on our
experience since then. In particular, we now understand that the
most important benefit of Mock Objects is what we originally
called “interface discovery”. We have also reimplemented our
framework to support dynamic generation of Mock Objects, based
on this experience.

The rest of this section establishes our understanding of Test-
Driven Development and good practice in Object-Oriented
Programming, and then introduces the Mock Object concept. The
rest of the paper introduces Need-Driven Development, as

expressed using Mock Objects, and shows a worked example.
Then we discuss our experiences of developing with Mock
Objects and describe how we applied these to jMock, our Mock
Object framework.

1.1 Test-Driven Development
In Test-Driven Development (TDD), programmers write tests,
called Programmer Tests, for a unit of code before they write the
code itself [1]. Writing tests is a design activity, it specifies each
requirement in the form of an executable example that can be
shown to work. As the code base grows, the programmers refactor
it [4], improving its design by removing duplication and clarifying
its intent. These refactorings can be made with confidence
because the test-first approach, by definition, guarantees a very
high degree of test coverage to catch mistakes.

This changes design from a process of invention, where the
developer thinks hard about what a unit of code should do and
then implements it, to a process of discovery, where the developer
adds small increments of functionality and then extracts structure
from the working code.

Using TDD has many benefits but the most relevant is that it
directs the programmer to think about the design of code from its
intended use, rather than from its implementation. TDD also tends
to produce simpler code because it focuses on immediate
requirements rather than future-proofing and because the
emphasis on refactoring allows developers to fix design
weaknesses as their understanding of the domain improves.

1.2 Object-Oriented Programming
A running Object-Oriented (OO) program is a web of objects that
collaborate by sending messages to each other. As described by
Beck and Cunningham [2], “no object is an island. … All objects
stand in relationship to others, on whom they rely for services and
control”. The visible behaviour of each object is defined in terms
of how it sends messages and returns results in response to
receiving messages.

Figure 1. A Web of Collaborating Objects
The benefit of OO is that it defines a unit of modularity which is
internally coherent but has minimal coupling to the rest of the
system. This makes it easy to modify software by changing how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

objects are composed together into an application. To achieve this
flexibility in practice, objects in a well-designed system should
only send messages to their immediate neighbours, otherwise
known as the Law of Demeter [15].

Note that the immediate neighbours of an object do not include
objects whose references are returned from a call to another
object. Programmers should avoid writing code that looks like:

dog.getBody().getTail().wag();

colloquially known as a “Train Wreck”. This is bad because this
one line depends on the interfaces and implied structure of three
different objects. This style laces structural dependencies between
unrelated objects throughout a code base. The solution is
described by the heuristic "Tell, Don't Ask" [7], so we rewrite our
example as:

dog.expressHappiness();

and let the implementation of the dog decide what this means.

Given an object that talks only to its immediate neighbours, we
can describe it in terms of the services it provides and the services
it requires from those neighbours. We call those required services
outgoing interfaces because that is how the object calls out to
other objects.

1.3 Test-Driven Development of Object
Oriented Programs
If we concentrate on an object’s external interactions, we can test
it by calling one of its services and tracking the resulting
interactions with its neighbours. If we are programming test-first,
we can define those tests in terms of outgoing interfaces (which
might not yet exist) because that’s how we can tell whether an
action has succeeded.

For example, we decide that dog.expressHappiness() has
succeeded when its implementation has called
body.wagTail(). This is a design decision that we make
when developing the dog object about how to implement one of
its services (note that we’re still avoiding a Train Wreck by not
asking the body about its implementation of a tail).

If the DogBody object does not yet have a wagTail() method,
this test has identified a new requirement that it must fulfil. We
don’t want to stop now and implement the new feature, because
that would be a distraction from the current task and because the
implementation of wagTail() might trigger an unpredictably
long chain of further implementations. Instead we provide a false
implementation of the DogBody object that pretends to
implement the method. Now we can instrument that false object to
see if wagTail() is actually called when testing
expressHappiness().

To summarise, we test an object by replacing its neighbours with
objects that test that they are called as expected and stub any
behaviour that the caller requires. These replacements are called
mock objects. We call the technique of TDD with mock objects,
Mock Objects.

2. MOCK OBJECTS AND NEED-DRIVEN
DEVELOPMENT
Mock Objects changes the focus of TDD from thinking about the
changes in state of an object to thinking about its interactions with
other objects. We use Mock Objects to let us write the code under
test as if it had everything it needs from its environment. This
process shows us what an object’s environment should be so we
can then provide it.

2.1 Need-Driven Development
A core principle of Lean Development is that value should be
pulled into existence from demand, rather than pushed from
implementation: “The effect of ‘pull’ is that production is not
based on forecast; commitment is delayed until demand is present
to indicate what the customer really wants.” [16].

This is the flow of programming with Mock Objects. By testing an
object in isolation, the programmer is forced to consider an
object’s interactions with its collaborators in the abstract, possibly
before those collaborators exist. TDD with Mock Objects guides
interface design by the services that an object requires, not just
those it provides. This process results in a system of narrow
interfaces each of which defines a role in an interaction between
objects, rather than wide interfaces that describe all the features
provided by a class. We call this approach Need-Driven
Development.

For example, Figure 2 depicts a test of object A. To fulfil the
needs of A, we discover that it needs a service S. While testing A
we mock the responsibilities of S without defining a concrete
implementation.

Test A mock
S

S
Figure 2. Interface Discovery

Once we have implemented A to satisfy its requirements we can
switch focus and implement an object that performs the role of S.
This is shown as object B in Figure 3. This process will then
discover services required by B, which we again mock out until
we have finished our implementation of B.

Test B

|

|

mock
T

mock
U

S

T

U

Figure 3. Iterative Interface Discovery
We continue this process until we reach a layer that implements
real functionality in terms of the system runtime or external
libraries.

The end result is that our application is structured as a
composition of objects that communicate through narrowly
defined role interfaces (Figure 4). As another writer put it, "From
each according to his abilities, to each according to his needs!"
[11].

A B

|

|

|

|

C

E

D
S

T

U

W

V

Figure 4. A Web of Objects Collaborating Through Roles
Our experience is that systems we produce this way tend towards
very flat class hierarchies. This avoids well-known problems, such
as the Fragile Base Class [12], which make systems harder to
understand and modify.

This process is similar to traditional Top-Down Development, in
which the programmer starts at the highest level of abstraction and
proceeds, layer by layer, to fill in the detail. The intention is that
each layer of code is written in a coherent terminology, defined in
terms of the next level of abstraction. This is difficult to achieve
in practice because the most important decisions have to be taken
early and it is hard to avoid duplication across lower level
components. TDD mitigates this by including Refactoring in its
process.

Programming from the Bottom-Up has different risks. All the
authors have had the experience of developing a supporting class
in isolation, as part of a larger task, only to find that the result was
not right because we had misunderstood something.

We find that Need-Driven Development helps us stay focussed on
the requirements in hand and to develop coherent objects.

3. A WORKED EXAMPLE
To illustrate the technique, we will work through an example.
Consider a component that caches key-based retrievals from an
object loading framework. The instances become invalid a given
time after they've been loaded, so sometimes we want to force a
reload.

With Mock Objects we use a common structure, identified in [10],
for programmer tests.

1. Create the test fixture including any mock objects
2. Define expectations and stubs on the mock objects
3. Invoke the method to be tested
4. Verify expectations and assert any postconditions

This makes the tests easier to read.

3.1 An Object Loader
Our first programmer test should be a simple success case, to load
and return objects that are not in the cache. In the case, we expect
to call the loader exactly once with each key, and we need to
check that the right value is returned from the cache. Using the
jMock framework, described in detail later, we can write out a
JUnit [9] test for this (we have left out instance creation for
brevity. KEY and VALUE are constants in the test case, not part
of the jMock framework).

public class TimedCacheTest {
 public void testLoadsObjectThatIsNotCached() {
 // we expect to call load
 // exactly once with the key,
 // this will return the given value
 mockLoader.expect(once())
 .method("load").with(eq(KEY))
 .will(returnValue(VALUE));

 mockLoader.expect(once())
 .method("load").with(eq(KEY2))
 .will(returnValue(VALUE2));

 assertSame("should be first object",
 VALUE, cache.lookup(KEY));
 assertSame("should be second object",
 VALUE2, cache.lookup(KEY2));
 mockLoader.verify();
 }
}

jMock uses reflection to match methods by name and parameters.
The jMock syntax for defining expectation is unusual, the first
expectation is equivalent to:

expectation = mockLoader.expect(once());
expectation.method("load");
expectation.with(eq(KEY));
expectation.will(returnValue(VALUE));

We daisy-chain these calls to make the tests more compact and
readable; this is discussed later.

The test implies that the Cache has relationships with something
that represents an object loader.

 TimedCache cache = new TimedCache (
 (ObjectLoader)mockLoader;
);

The test says that we should call the Object Loader exactly once
for each key to get a value. We call verify() on the mock
object at the end of the test to check that our expectations have
been met. An implementation that passes the test would be:

public class TimedCache {
 private ObjectLoader loader;
 // constructor
 public Object lookup(Object key) {
 return loader.load(key);
 }
}

3.1.1 Discovering a New Interface
What the test actually checks is that the Cache talks correctly to
any object that implements ObjectLoader; the tests for the real
Object Loader will be elsewhere. To write the test, all we need is
an empty interface called ObjectLoader so we can construct the
mock object. To pass the test, all we need is a load() method
that can accept a key. We have discovered the need for a type:

public interface ObjectLoader {
 Object load(Object theKey);
}

We have minimised the dependency between our cache and
whatever object loading framework we eventually use. The mock
object framework also has the advantage that we avoid difficulties
with complex setup or changeable data at this level of testing.
This leaves us free to think about the relationships between
objects, rather than how to get the test infrastructure to work.

3.2 Introducing Caching
The next test case is to look up a value twice and not have it
loaded the second time. We expect to call the loader exactly once
with a given key and return the found value. Our second test is:

public void testCachedObjectsAreNotReloaded() {
 mockLoader.expect(once())
 .method("load").with(eq(KEY))
 .will(returnValue(VALUE));

 assertSame("loaded object",
 VALUE, cache.lookup(KEY));
 assertSame("cached object",
 VALUE, cache.lookup(KEY));
}

We have left out the calls to verify() which in practice are
handled automatically by the MockObjectTestCase class.
This test, of course, fails with a message:

DynamicMockError: mockObjectLoader: no match found
Invoked: load(<key>)
in:
expected once and has been invoked:
 load(eq(<key>)), returns <value>

This tells us that we have called load() a second, unexpected
time with the key. The lines after “in:” describe the interactions
we expect to have with the Object Loader during the test. We can
pass this test by adding a hash map to the Cache; we need a hash
map, rather than just a value field, so that the first test will still
pass.

public Object lookup(Object key) {
 Object value = cachedValues.get(key);
 if (value == null) {
 value = loader.load(key);
 cachedValues.put(key, value);
 }
 return value;
}

There is, of course, an implication here that we cannot load null
values which we will treat as a requirement. In this case we would
also add tests to show what happens when a value is missing.

3.2.1 Testing interactions
By concentrating on the interactions between objects, rather than
their state, we can show that the cache does not have to go back to
the loader once a value has been retrieved; it calls lookup()
twice, but fails if load() is called more than once.

We also benefit from failing at the right time when the error
occurs, rather than at the end of the test. The stack trace takes us
to the load() within the second lookup(), and the failure
message tells what has happened and what should have.

3.3 Introducing Time
We have a requirement for time-dependent behaviour. We do not
want programmer tests to use system time because that makes
them subject to non-deterministic failures and timing pauses will
slow them down, so we introduce a Clock object that returns
Timestamp objects. We don’t want to think too hard just yet
about what it means for a value to expire, so we defer that
decision to a ReloadPolicy object.

This requirement changes the premise of the previous cache hit
test, so we’ll adapt and rename it. The test is now to look up a

value and then look it up again within its lifetime. We expect to
get a timestamp twice, once for the first load and once for the
second look up; we expect to call the loader exactly once with the
given key and return the found value; and, we expect to compare
the two timestamps to make sure that the cache is still valid.

For brevity, we will leave out the instantiation of the timestamp
objects loadTime and fetchTime. The test is now:

public void
testReturnsCachedObjectWithinTimeout() {
 mockClock.expect(atLeastOnce())
 .method("getCurrentTime").withNoArguments()
 .will(returnValues(loadTime, fetchTime));

 mockLoader.expect(once())
 .method("load").with(eq(KEY))
 .will(returnValue(VALUE));

 mockReloadPolicy.expect(atLeastOnce())
 .method("shouldReload")
 .with(eq(loadTime), eq(fetchTime))
 .will(returnValue(false));

 assertSame("should be loaded object",
 VALUE, cache.lookup(KEY));
 assertSame("should be cached object",
 VALUE, cache.lookup(KEY));
}

Again, given the lifetime requirements, we pass the Clock and
Reload Policy in to the constructor.

TimedCache cache = new TimedCache(
 (ObjectLoader)mockLoader,
 (Clock)mockClock,
 (ReloadPolicy)mockReloadPolicy
);

This test, of course, fails with message:

AssertionFailedError:
 mockClock: expected method was not invoked:
 expected at least once:
 getCurrentTime(no arguments),
 returns <loadTime>, then returns <fetchTime>

This failure was caught during the verify() and shows that we
need to introduce timing behaviour to the Cache. The next change
to TimedCache is a bit larger. We add a simple
TimestampedValue class to hold a timestamp/value pair, and
loadObject() loads the requested object and inserts it with
the current time as a TimestampedValue into
cachedValues.

private class TimestampedValue {
 public final Object value;
 public final Timestamp loadTime;
}

public Object lookup(Object theKey) {
 TimestampedValue found =
 (TimestampedValue) cachedValues.get(theKey);

 if(found == null ||
 reloadPolicy.shouldReload(
 found.loadTime, clock.getCurrentTime())
 {
 found = loadObject(theKey);
 }
 return found.value;
}

3.3.1 Programming by Composition
You might notice that everything that the TimedCache needs is
passed into it, either in the constructor or with the method call.
This is more or less forced on the programmer by the need to
substitute the neighbouring objects with mock implementations.
We believe that this is a strength, because it pushes the design
towards small, focussed objects that interact only with known
collaborators. It also encourages the programmer to create types to
represent abstract concepts in the system, such as the
ReloadPolicy, which gives a clearer separation of concerns in
the code.

3.3.2 Programming in the Abstract
The test now also checks that the Cache finds the current time
twice, once for each lookup, and routes those values correctly to
the reload policy. We don’t yet have to define what we mean by
time or how a value goes stale, we’re just concerned with the
essential flow of the method. Everything to do with external time
is abstracted away into interfaces that we have not yet
implemented, just as we abstracted away the object loading
infrastructure. This code treats the timestamps as opaque types,
so we can use dummy implementations. This leaves us free to
concentrate on getting the core caching behaviour right.

3.4 Introducing Sequence
We are also concerned that the timestamp for an object is not set
before it’s loaded into the cache. That is, we expect to retrieve the
current time after we load the object. We can adjust the test to
enforce this sequence.

public void
testReturnsCachedObjectWithinTimeout() {
 mockLoader.expect(once())
 .method("load").with(eq(KEY))
 .will(returnValue(VALUE));

 mockClock.expect(atLeastOnce())
 .after(mockLoader, "load")
 .method("getCurrentTime").withNoArguments()
 .will(returnValues(loadTime, fetchTime));

 mockReloadPolicy.expect(atLeastOnce())
 .method("shouldReload")
 .with(eq(loadTime), eq(fetchTime))
 .will(returnValue(false));

 assertSame("should be loaded object",
 VALUE, cache.lookup(KEY));
 assertSame("should be cached object",
 VALUE, cache.lookup(KEY));
}

The after() clause matches on the identity of an invocation, in
this case in a different object. That identity can be set in an id()
clause with a default, as here, of the method name. This fails,
because our implementation of loadObject() retrieves the
current time into a variable before loading the object, with the
message:

DynamicMockError: mockClock: no match found
Invoked: getCurrentTime()
in:
 expected at least once:
 getCurrentTime(no arguments),
 after load on mockObjectLoader,
 returns <loadTime>, then returns <fetchTime>

This message tells us that we have an invocation of
getCurrentTime(), but we’re actually looking for an
invocation of getCurrentTime() that occurs after an
invocation of load(), which is not the same thing. We fix the
implementation by moving the call to Clock.

3.4.1 Varying Levels of Precision
This test now specifies an extra relationship to say that the clock
should not be queried until an object has been loaded. This is
possible because we’re testing interactions between objects rather
than final state, so we can catch events at the time they happen.
Our use of mock implementations of all the neighbouring objects
means that we have somewhere to attach those additional
assertions.

On the other hand, we don’t care if the ReloadPolicy is called
more than once, as long as it has the right parameters; it will
always return the same result. This means we can weaken its
requirement from being called exactly once to being called at
least once. Similarly, jMock can also soften the requirements on
the parameters for a mock object using a technique we call
Constraints; this is described later.

3.5 Introducing a Timeout
Finally, we want to check that a stale value will actually be
refreshed from the loader. In this case, we expect that the loader
will be called twice with the same key and return two different
objects. In addition, the reload policy will request a reload, and
we expect that the clock will return an extra timestamp for the
additional load.

public void
testReloadsCachedObjectAfterTimeout() {
 mockClock.expect(times(3))
 .method("getCurrentTime").withNoArguments()
 .will(returnValues(loadTime, fetchTime,
 reloadTime));

 mockLoader.expect(times(2))
 .method("load").with(eq(KEY))
 .will(returnValues(VALUE, NEW_VALUE));

 mockReloadPolicy.expect(atLeastOnce())
 .method("shouldReload")
 .with(eq(loadTime), eq(fetchTime))
 .will(returnValue(true));

 assertSame("should be loaded object",
 VALUE, cache.lookup(KEY));
 assertSame("should be reloaded object",
 NEW_VALUE, cache.lookup(KEY));
}

The existing implementation passes this test. In this case, we
might experiment by breaking the code to make sure that this is
because the code is correct rather than because the test is
incomplete.

As before, this test exercises a timeout without having to wait
because we have abstracted out the timing aspects of the Cache.
We can force the reload by returning a different value from the
ReloadPolicy.

3.6 Writing Tests Backwards
In practice we have noticed that we write the tests in a different
order, one that follows our thinking during TDD.

1. Identify the object we are testing and write the method
call, with any required parameters

2. Write expectations to describe the services the object
requires from the rest of the system

3. Represent those services as mock objects
4. Create the rest of the context in which the test will

execute
5. Define any postconditions
6. Verify the mocks.

As a result of following the “Tell, Don’t Ask” principle, we often
don’t have any postconditions to assert (step 5). This is surprising
to programmers who are not thinking about how their objects
communicate.

These steps are shown in the example below :

public void testReturnsNullIfLoaderNotReady() {

 Mock mockLoader = mock(ObjectLoader.class); // 3
 mockLoader.expect(never()) // 2
 .method("load").with(eq(KEY))

 mockLoader.stub() // 4
 .method("isReady").withNoArguments()
 .will(returnValue(false));
 TimedCache cache =
 new TimedCache((ObjectLoader)mockLoader); // 4

 Object result = cache.lookup(KEY); // 1

 assertNull("should not have a KEY”, // 5
 result);
 mockLoader.verify(); // 6
}

It is particularly important to make sure that you are clear about
the object that you are testing and its role (step 1) as we have
often observed this to be a source of confusion when people are
having trouble writing tests. Once they have clarified this, it
becomes straightforward to proceed from step 2.

3.7 Summary
Working through this example has shown how programmers can
drive the discovery of object roles by concentrating on the
interactions between objects, not their state. Writing tests provides
a framework to think about functionality, Mock Objects provides
a framework for making assertions about those relationships and
for simulating responses.

Programmers can concentrate on the task in hand, assuming that
the infrastructure they need will be available because they can
build it later. The need to pass mock objects into the target code
leads to a object-oriented style based on composition rather than
inheritance. All this encourages designs with good separation of
concerns and modularity.

Mock Objects also allows programmers to make their tests only as
precise as they need to be. The example showed both a more
precise assertion, that one invocation must follow another, and a
less precise assertion, that a call may be made more than once.
The jMock Constraint framework is discussed later.

One flaw with this example is that the requirements for the
TimedCache itself have not been driven by a higher-level client,
as would normally be the case.

4. MOCK OBJECTS IN PRACTICE
Between us, the authors have been working with Mock Objects on
a wide range of projects for over 5 years. We have also
corresponded with other developers who have been using the
technique. The longest project was 4 years, and the largest team
was 15 developers. We have used it with Java, C#, Ruby, Python,
and Javascript, with application scale ranging from enterprise-
level to hand-held.

Mock Objects is a design aid, but is no substitute for skilled
developers. Our experience is that mock-based tests quickly
become too complicated when the system design is weak. The use
of mock objects amplifies problems such as tight coupling and
misallocated responsibilities. One response to such difficulties is
to stop using Mock Objects, but we believe that it is better to use
this as a motivator for improving the design. This section
describes some of the heuristics that we have found to be helpful.

4.1 Only Mock Types You Own
Mock Objects is a design technique so programmers should only
write mocks for types that they can change. Otherwise they cannot
change the design to respond to requirements that arise from the
process. Programmers should not write mocks for fixed types,
such as those defined by the runtime or external libraries. Instead
they should write thin wrappers to implement the application
abstractions in terms of the underlying infrastructure. Those
wrappers will have been defined as part of a need-driven test.

We have found this to be a powerful insight to help programmers
understand the technique. It restores the pre-eminence of the
design in the use of Mock Objects, which has often been
overshadowed by its use for testing interactions with third-party
libraries.

4.2 Don’t use getters
The trigger for our original discovery of the technique was when
John Nolan set the challenge of writing code without getters.
Getters expose implementation, which increases coupling between
objects and allows responsibilities to be left in the wrong module.
Avoiding getters forces an emphasis on object behaviour, rather
than state, which is one of the characteristics of Responsibility-
Driven Design.

4.3 Be explicit about things that should not
happen
A test is a specification of required behaviour and is often read
long after the original programmer wrote the test. There are some
conditions that are not made clear when they are simply left out of
the test. A specification that a method should not be called, is not
the same as a specification that doesn’t mention the method at all.
In the latter case, it’s not clear to other readers whether a call to
the method is an error. We often write tests that specify that
methods should not be called, even where not necessary, just to
make our intentions clear.

4.4 Specify as little as possible in a test
When testing with Mock Objects it is important to find the right
balance between an accurate specification of a unit's required
behaviour and a flexible test that allows easy evolution of the
code base. One of the risks with TDD is that tests become
“brittle”, that is they fail when a programmer makes unrelated
changes to the application code. They have been over-specified to

check features that are an artefact of the implementation, not an
expression of some requirement in the object. A test suite that
contains a lot of brittle tests will slow down development and
inhibit refactoring.

The solution is to re-examine the code and see if either the
specification should be weakened, or the object structure is wrong
and should be changed. Following Einstein, a specification should
be as precise as possible, but not more precise.

4.5 Don’t use mocks to test boundary objects
If an object has no relationships to other objects in the system, it
does not need to be tested with mock objects. A test for such an
object only needs to make assertions about values returned from
its methods. Typically, these objects store data, perform
independent calculations or represent atomic values. While this
may seem an obvious thing to say, we have encountered people
trying to use mock objects where they don’t actually need to.

4.6 Don’t add behaviour
Mock objects are still stubs and should not add any additional
complexity to the test environment, their behaviour should be
obvious [10]. We find that an urge to start adding real behaviour
to a mock object is usually a symptom of misplaced
responsibilities.

A common example of this is when one mock has to interpret its
input to return another mock, perhaps by parsing an event
message. This introduces a risk of testing the test infrastructure
rather than the target code.

This problem is avoided in jMock because its invocation matching
infrastructure allows the test to specify expected behaviour. For
example:

mock.expect(once())
 .method("retrieve").with(eq(KEY1))
 .willReturn(VALUE1);

mock.expect(once())
 .method("retrieve").with(eq(KEY2))
 .willReturn(VALUE2);

4.7 Only mock your immediate neighbours
An object that has to navigate a network of objects in its
implementation is likely to be brittle because it has too many
dependencies. One symptom of this is tests that are complex to set
up and difficult to read because they have to construct a similar
network of mock objects. Unit tests work best when they focus on
testing one thing at a time and only setting expectations on objects
that are nearest neighbours.

The solution might be to check that you are testing the right
object, or to introduce a role to bridge between the object and its
surroundings.

4.8 Too Many Mocks
A similar problem arises when a test has to pass too many mock
objects to the target code, even if they are all immediate
neighbours. Again, the tests is likely to be complex to set up and
hard to read. Again the solution might be to change misaligned
responsibilities, or to introduce an intermediate role.
Alternatively, it is possible that the object under test is too large
and should be broken up into smaller objects that will be more
focussed and easier to test.

4.9 Instantiating new objects
It is impossible to test interactions with an object that is created
within the target code, including interactions with its constructor.
The only solution is to intervene in the creation of the object,
either by passing an instance in or by wrapping the call to new.

We have found several useful ways of approaching this problem.
To pass an instance in, the programmer can either add a parameter
to the constructor or the relevant method of the object under test,
depending on the relationship between the two objects. To wrap
instance creation, the test can either pass in a factory object or add
a factory method to the object under test.

The advantage of a factory object is that the test can set
expectations on the arguments used to create a new instance. The
disadvantage is that this requires a new type. The factory object
often represents a useful concept in the domain, such as the
Clock in our example.

A factory method simply returns a new instance of the type, but
can be overridden in a subclass of the target object for testing to
return a mock implementation. This is a pragmatic solution which
less heavyweight than creating a factory type, and may be
effective as an interim implementation.

Some developers propose using techniques such as Aspect
Oriented Programming or manipulating class loaders to replace
real objects. This is useful for removing external dependencies but
does not help to improve the design of the code base.

5. MISCONCEPTIONS ABOUT MOCKS
What we mean by "Mock Objects" is often different from what
other people mean, and different from what we used to mean. In
particular,

5.1 Mocks are just Stubs
Stubs are dummy implementations of production code that return
canned results. Mock Objects act as stubs, but also include
assertions to instrument the interactions of the target object with
its neighbours.

5.2 Mock Objects should only be used at the
boundaries of the system
We believe the opposite, that Mock Objects are most useful when
used to drive the design of the code under test. This implies that
they are most useful within the system where the interfaces can be
changed. Mocks and stubs can still be useful for testing
interactions with third-party code, especially for avoiding test
dependencies, but for us this is a secondary aspect to the
technique.

5.3 Gather state during the test and assert
against it afterwards.
Some implementations set values when methods are called on the
Mock Object and then check them at the end of the test. A special
case of this is the Self Shunt pattern [3] in which the test class
implements a Mock itself.

public class TimedClassTest
 implements ObjectLoader
{
 final Object RESULT = new Object();
 final Object KEY = new Object();
 int loadCallCount = 0;
 Object lookupKey;

 // ObjectLoader method
 public Object lookup(Object key) {
 loadCallCount++;
 lookupKey = key;
 return LOOKUP_RESULT;
 }

 public testReturnsCachedObjectWithinTimeout() {
 // set up the rest of the test...
 assertSame("loaded object",
 RESULT, cache.lookup(KEY));
 assertSame("cached object",
 RESULT, cache.lookup(KEY));

 assertEquals("lookup key", KEY, lookupKey);
 assertEquals("load call count",
 1, loadCallCount);
 }
}

This is straightforward and self-contained but has two obvious
disadvantages. First, any failures occur after the fact rather than at
the time of the error, whereas putting the assertions into the Mock
means that the test will fail at the point where the extra call to
load() happens. Our experience is that immediate failures are
easier to understand and fix than post-hoc assertions. Second, this
approach splits the implementation of the assertion across the test
code, raising its intellectual overhead. Our strongest objection,
however, is that this approach does not focus the interactions
between the object under test and its neighbours, which we
believe is key to writing composable, orthogonal code. As the
author says, a Self Shunt is likely to be a placeholder
implementation as it does not scale well.

5.4 Testing using Mock Objects duplicates the
code.
Some uses of Mock Objects set up behaviour that shadows the
target code exactly, which makes the tests brittle. This is
particularly common in tests that mock third-party libraries. The
problem here is that the mock objects are not being used to drive
the design, but to work with someone else’s. At some level, mock
objects should shadow a scenario for the target code, but only
because the design of that code should be driven by the test.
Complex mock setup for a test is actually a hint that there is a
missing object in the design.

5.5 Mock Objects inhibits refactoring because
many tests break together.
Some programmers prefer to test clusters of objects so they can
refactor code within that cluster without changing the tests. This
approach, however, has disadvantages because each test depends
on more objects than for Mock Object-based testing. First, a
change to a core class because of a new requirement may force
changes to multiple tests, especially to test data which is not as
amenable to refactoring as code. Second, finding the error when a
test does fail can be more complex because the link between the
tests and the failing code is less direct; at its worst, this might
even require a debugger. Our experience is that Mock Object-

based test failures are more focussed and more self-explanatory,
reducing the turnaround on code changes.

5.6 Using Strings For Method Names is
Fragile
Our dynamic mock frameworks look up methods by name using
strings. These are not recognised and changed by refactoring
development environments when the mocked method is renamed,
so related tests will break. Some programmers believe that
constantly being forced to repair tests will slow refactoring too
much. In practice, types tend to be used more locally in a Mock
Object-driven code base, so fewer tests break than might be
expected, and those test break cleanly so that the required change
is obvious. There is some extra overhead, but we believe it is
worth paying for the greatly increased flexibility of the way we
can specify expectations.

6. JMOCK: A TOOL FOR NEED-DRIVEN
DEVELOPMENT
jMock is an open source framework that provides a convenient
and expressive API for mocking interfaces, specifying expected
invocations and stubbing invoked behaviour. jMock encapsulates
the lessons we have learned during the last few years of using
mock objects in a test driven process.

The test-driven process, especially when used with pair
programming [18], has a rhythm that gives feedback and
maintains motivation. The rhythm is broken if the programmers
must stop writing the test to write support code.

The first mock object library had this problem: programmers who
discovered an interface while writing a test had to stop and write
its mock implementation. The jMock API uses dynamic code
generation to create mock implementations on the fly at runtime
and does everything it can (within the limitations of the Java
language) to support programmers when writing and, later,
reading expectations.

The main entry point to the jMock API is
MockObjectTestCase, a class that extends JUnit's
TestCase with support for using mock objects.
MockObjectTestCase provides methods that make
expectations easy to read and helps the programmer avoid
mistakes by automatically verifying mock objects at the end of the
test.

Mock objects are created by the mock(...) method, which
takes a Class object representing an interface type and returns a
Mock object that implements that interface. The Mock object can
then be cast to the mocked type and passed to the domain code
under test.

class TimedCacheTest
 extends MockObjectTestCase
{
 Mock mockLoader = mock(ObjectLoader.class);
 TimedCache cache = new TimedCache (
 (ObjectLoader)mockLoader);
 ...
}

The Mock object returned from the mock(...) method
provides methods for setting up expectations.

6.1 Defining Expectations
jMock is especially designed for writing tests that are both run
and read as a form of documentation. Most of the jMock API is
concerned with defining readable syntactic sugar for defining
expectations. This goal has led to an API that is quite
unconventional when compared to typical Java designs because it
tries to implement a domain specific embedded language [6]
hosted in Java. In particular, the API deliberately breaks the Law
of Demeter and does not name methods as verbs in the imperative
mood.

An expectation is specified in multiple clauses. The first clause
states whether we want to expect or stub an invocation. jMock
treats a stub as a degenerate form of expectation that does not
actually have to occur. However, the distinction between stubs
and expectations is so important to the programmer that jMock
makes the distinction obvious in test code.

Subsequent clauses define which method invocations on the mock
are tested by the expectation (matching rules), define the stubbed
behaviour for matching methods, and optionally identify the
expectation so that it can be referenced in the matching rules of
subsequent expectations. An expectation contains multiple
matching rules and matches invocations that pass all of its rules.

Each clause of an expectation is represented in test code by a
method call to an API interface. Each method returns a reference
to an interface with which the programmer can define the next
clause, which will return another interface for the following
clause, and so on. The chain of calls that defines an entire
expectation is started by calling expect() or stub() on the
mock itself.

mock.expect(expectation)
 .method(method name)
 .with(argument constraints)
 .after(id of prior invocation)
 .match(other matching rule)
 .will(stubbed behaviour)
 .id(id of this invocation);

mock.stub().method(method name)...

The names of the chained methods in a statement that sets up the
expectation make the expectation easy to understand. The daisy-
chain API style ensures that all expectations are specified in a
consistent order: expectation or stub, method name, arguments,
ordering and other matching rules, stubbed behaviour, identifier.
This makes it easier to work with tests that are written by different
people.

When used with auto-completion in a development tool, the API
acts like a "wizard", guiding the programmer step by step through
the task of defining an expectation.

6.2 Flexible and Precise Specifications
To avoid the problems of over specification described above,
jMock lets the programmer specify expected method calls as
constraints that must be met, rather than actual values. Constraints
are used to test argument values and even method names. This
allows the programmer to ignore aspects of an object's
interactions that are unrelated to the functionality being tested.

Constraints are usually used to specify allowable argument values.
For example, we can test that a string contains an expected
substring while ignoring unimportant details of formatting and

punctuation. Although the most common case is that arguments
are compared to expected values, the constraints make explicit
whether the comparison is actually for equivalence (the equals
method) or identity (the == operator). It is also common to ignore
parameters altogether, which can be specified with the
IS_ANYTHING constraint.

Constraints are created by “sugar” methods in the
MockObjectTestCase. The with method of the expectation
builder interface defines argument constraints. The expectation
below specifies that the pipeFile method must be called once
with two arguments, one of which is equal to the expected
fileName and the other of which is the mockPipeline
object.

mock.expect(once())

 .method("pipeFile")
 .with(eq(fileName),same(mockPipeline))
 .will(returnValue(fileContent));

It is often useful to match more than just parameter values. For
example, it is often useful to match against subsets of an object's
methods, such as all Java Bean property getters. In this case,
jMock lets the programmer specify a constraint over method
names. Along with a mechanism to create default results, this
allows us to ignore unrelated aspects of an object's interface and
concentrate only on the interesting aspects for the test.
mock.stub().method(startingWith("get"))
 .withNoArguments()
 .will(returnADefaultValue);

jMock lets the user specify more complex matching rules such as
constraints on the order of calls to a mock, or even the order of
calls on different mocks. In general, ordering constraints are not
necessary, and should be used with care because they can make
tests too brittle. jMock minimises this risk by letting the user
specify partial orderings between individual invocations. We
demonstrated ordering when we introduced sequence in the
example.

jMock forces users to specify argument constraints to ensure that
tests can easily be read as documentation. We have found that
users prefer the resulting clarity, despite the extra typing involved,
because it helps them avoid subtle errors.

6.3 Extensibility
Although jMock provides a large library of constraints and
matching rules, it cannot cover every scenario that a programmer
might need. In fact creating constraints specific to your problem
domain improves the clarity of your tests. For this reason
matching rules and constraints are extensible. Programmers can
define their own rules or constraints that seamlessly extend the
jMock syntax.

For example, objects that fire events will create a new event
object each time an event occurs. To match against an event from
a specific object we can write a custom constraint that compares
the source of the event to an expected source:

mock.expect(once())
 .method("actionPerformed")
 .with(anActionEventFrom(quitButton));

jMock is primarily designed to support Need-Driven
Development. As such, the API may be less applicable in other
scenarios. Users have asked us to modify jMock to help them

perform integration testing, do procedural programming, avoid
refactoring poorly designed code, and mock concrete classes, but
we have politely declined. No API can be all things to all people,
but jMock contains many useful constructs for testing in general,
whether or not you do Need-Driven Development. Therefore,
jMock has a layered design: the jMock API is "syntactic sugar"
implemented in terms of a core object-oriented framework that
can be used to create other testing APIs. A description of these
core APIs is beyond the scope of this paper but can be found on
the jMock website.

6.4 Built To Fail
jMock is designed to produce informative messages so that it is
easy to diagnose what caused a test failure. Mock objects are
named so that the programmer can easily relate failure messages
to the implementation of the test and the target code. The core
objects that are composed to specify expectations can provide
descriptions that combine to produce a clear failure message.

By default, a mock object is named after the type that it mocks. It
is often more useful to use the name to describe the role of that
mock within the test. In this case, a mock can be named explicitly
by passing the name to the mock's constructor.

namedMock = mock(MockedType.class,"namedMock");

We have discovered a number of other testing techniques that
contribute to good error messages, such as Self Describing Values
and Dummy Objects. A Self Describing Value is one that
describes its role in the test when printed as part of an error
message. For example, a string that is used as a file name should
have value such as "OPENED-FILE-NAME" instead of a
realistic file name, such as "invoice.xml". A Dummy Object
is an object that is passed between objects but not actually
invoked during the test. A test uses a dummy object in to specify
expectations or assertions that verify that the object under test
collaborates correctly with its neighbours. The jMock API
includes convenience functions for creating self-describing
dummy objects.

Timestamp loadTime =
 (Timestamp)newDummy(Timestamp.class,"loadTime");

Dummy Objects allow the programmer to defer design decisions
about the definition of a type and how the type is instantiated.

7. RELATED WORK
Responsibility Driven Design [19] is acknowledged as a useful
approach to the design of object oriented software. Need-Driven
Development is a technique for doing Responsibility-Driven
Design test-first. Mock Objects helps the user discover and design
roles and responsibilities from the act of writing tests.

The original mockobjects.com library [10] provided a low
level library for specifying and verifying expectations in hand
written mocks. Having to take time out to create mock
implementation of interfaces interrupted the rhythm of the Test
Driven Development cycle and resulted in extra work when
interfaces changed. To mitigate this, the project provided mock
implementations of many of the common JDK and J2EE
interfaces. This was impractical to complete and focused on using
mock objects for testing rather than as a design tool.

MockMaker [14] automatically generated the source code for
mock objects from user defined interface definitions at build time.
This encouraged the use of mock objects as a design aid and
reduced the interruption to the rhythm of programming. A
drawback was that it complicated the build process and the
generated mock objects were hard to customise.

EasyMock [5] generates mock objects at runtime through dynamic
code generation. It features a “record and playback” style API.
Test code defines expected calls by making calls onto a mock
object while it is in “record mode” and then puts the mock object
into “playback mode” before invoking the object under test. The
mock object then verifies that it receives the same calls with the
same arguments as those that it recorded. This provided an API
that was very easy for new users and that worked well with
refactoring tools. However, the simple way of defining
expectations often results in over-specified, brittle tests.

DynaMock [13] also generates mock objects at run time. The API
is designed to be read as a specification of required behaviour.
However, the API is inflexible and hard to extend by users.

Some projects use Aspect Oriented Programming [8] or byte code
manipulation to redirect calls on application objects to mock
objects during tests. This approach can be useful if you need to
test code that runs against inflexible third party APIs. However,
this approach is just a testing technique and inhibits useful
feedback into the design process.

8. FURTHER WORK
Our plans for jMock are to improve the API to work well with
automatic refactoring tools and code completion whilst
maintaining the flexibility and expressiveness of the current API.

We plan to port jMock to other languages, including C#, and
dynamic languages such as Ruby and Python. Much of the
development effort of jMock was spent on exploring how to
define a usable domain specific language in Java. A design goal of
the porting efforts will be to maintain the expressiveness of the
API while supporting local language idioms.

An issue with the Mock Objects technique is maintaining and
checking consistency between different tests. A test that uses a
Mock Object verifies that the object under test makes an expected
sequence of outgoing calls. However, this does not test that all
objects that use the same interface use that interface in a
consistent way, or are consistent with implementers of that
interface. We currently address this issue by integration testing
and running acceptance tests end-to-end. This catches integration
errors but identifying the cause of an error is complicated. We are
currently working on an API for testing consistency among clients
and implementers of an interface by explicitly describing
protocols between objects.

9. CONCLUSIONS
Since our previous paper on the topic, we have found that our
basic concepts still hold up in daily use across multiple projects.
Our understanding of the technique has deepened, in particular we
now have a much stronger bias towards using Mock Objects for
design, rather than just testing. We now understand its role in
driving good design from requirements, and its technical
limitations. We have embodied our experience in jMock, a new

generation of Mock Object framework that we believe gives us the
expressiveness we need to support Need-Driven Development.

10. ACKNOWLEDGMENTS
Our thanks to Martin Fowler, John Fuller, Nick Hines, Dan North,
Rebecca Parsons, Imperial College, our colleagues at
ThoughtWorks, and members of the eXtreme Tuesday Club.

11. REFERENCES
[1] Astels, D. Test-Driven Development: A Practical Guide,

Prentice-Hall, 2003.

[2] Beck, K. and Cunningham, W. A Laboratory For Teaching
Object-Oriented Thinking. In SIGPLAN Notices
(OOPLSA’89), 24, 10, October 1989.

[3] Feathers, M. The “Self-Shunt” Unit Testing Pattern, May
2001. Available at:
http://www.objectmentor.com/resources/articles/SelfShunPtr
n.pdf

[4] Fowler, M. et al. Refactoring: Improving the Design of
Existing Code, Addison-Wesley, Reading, MA, 1999.

[5] Freese, T. EasyMock 2003. Available at:
http://www.easymock.org

[6] Hudak, P. Building domain-specific embedded languages.
ACM Computing Surveys, 28(4es), December 1996.

[7] Hunt, A. and Thomas, D. Tell, Don’t Ask, May 1998.
Available at:
http://www.pragmaticprogrammer.com/ppllc/papers/1998_05
.html

[8] Kiczales, G., et al. Aspect-Oriented Programming, In
proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag LNCS
1241. June 1997.

[9] JUnit. 2004. Available at http://www.junit.org

[10] Mackinnon, T., Freeman, S., Craig, P. Endo-testing: unit
testing with mock objects. In Extreme Programming
Examined, Addison-Wesley, Boston, MA. 2001. 287-301.

[11] Marx, K. Critique of the Gotha Program, 1874.

[12] Mikhajlov, L. and Sekerinski, E. A Study of the Fragile Base
Class Problem. In E. Jul (Ed.), ECOOP'98 - Object-Oriented
Programming 12th European Conference, Brussels,
Belgium, July 1998, pp 355-382, Lecture Notes in Computer
Science 1445, Springer-Verlag,1998.

[13] Massol, V. and Husted, T. JUnit in Action, Manning, 2003.

[14] Moore, I. and Cooke, M. MockMaker, 2004. Available at:
http://www.mockmaker.org

[15] Lieberherr, K. and Holland, I. Assuring Good Style for
Object-Oriented Programs IEEE Software, September 1989,
38-48.

[16] Poppendieck, M. Principles of Lean Thinking, In OOPSLA
Onward!, November 2002.

[17] Sun Microsystems, Java Messaging Service, Available at:
http://java.sun.com/products/jms

[18] Williams, L. and Kessler, R. Pair Programming Illuminated.
Addison-Wesley, Reading, MA, 2002. ISBN 0201745763.

[19] Wirfs-Brock, R. and McKean, A. Object Design: Roles,
Responsibilities, and Collaborations, Addison-Wesley,
Reading, MA, 2002.

